Back to Courses

Data Analysis Courses - Page 50

Showing results 491-500 of 998
AutoML tools for data science
By the end of this project, you will learn how to perform analysis on data using different python libraries and export reports and visualization without much hassle all this with minimal coding.
Ask Questions to Make Data-Driven Decisions
This is the second course in the Google Data Analytics Certificate. These courses will equip you with the skills needed to apply to introductory-level data analyst jobs. You’ll build on your understanding of the topics that were introduced in the first Google Data Analytics Certificate course. The material will help you learn how to ask effective questions to make data-driven decisions, while connecting with stakeholders’ needs. Current Google data analysts will continue to instruct and provide you with hands-on ways to accomplish common data analyst tasks with the best tools and resources. Learners who complete this certificate program will be equipped to apply for introductory-level jobs as data analysts. No previous experience is necessary. By the end of this course, you will: - Learn about effective questioning techniques that can help guide analysis. - Gain an understanding of data-driven decision-making and how data analysts present findings. - Explore a variety of real-world business scenarios to support an understanding of questioning and decision-making. - Discover how and why spreadsheets are an important tool for data analysts. - Examine the key ideas associated with structured thinking and how they can help analysts better understand problems and develop solutions. - Learn strategies for managing the expectations of stakeholders while establishing clear communication with a data analytics team to achieve business objectives.
Python Data Representations
This course will continue the introduction to Python programming that started with Python Programming Essentials. We'll learn about different data representations, including strings, lists, and tuples, that form the core of all Python programs. We will also teach you how to access files, which will allow you to store and retrieve data within your programs. These concepts and skills will help you to manipulate data and write more complex Python programs. By the end of the course, you will be able to write Python programs that can manipulate data stored in files. This will extend your Python programming expertise, enabling you to write a wide range of scripts using Python This course uses Python 3. While most Python programs continue to use Python 2, Python 3 is the future of the Python programming language. This course introduces basic desktop Python development environments, allowing you to run Python programs directly on your computer. This choice enables a smooth transition from online development environments.
The Apps Script CLI - clasp
This is a self-paced lab that takes place in the Google Cloud console. The Apps Script CLI, or clasp, is a tool that lets you create, edit, and deploy Apps Script projects locally and create and publish web apps and add-ons for products like Sheets, Docs, Forms, and Slides from the command line.
Introduction to Reproducibility in Cancer Informatics
The course is intended for students in the biomedical sciences and researchers who use informatics tools in their research and have not had training in reproducibility tools and methods. This course is written for individuals who: - Have some familiarity with R or Python - have written some scripts. - Have not had formal training in computational methods. - Have limited or no familiar with GitHub, Docker, or package management tools. Motivation Data analyses are generally not reproducible without direct contact with the original researchers and a substantial amount of time and effort (BeaulieuJones et al, 2017). Reproducibility in cancer informatics (as with other fields) is still not monitored or incentivized despite that it is fundamental to the scientific method. Despite the lack of incentive, many researchers strive for reproducibility in their own work but often lack the skills or training to do so effectively. Equipping researchers with the skills to create reproducible data analyses increases the efficiency of everyone involved. Reproducible analyses are more likely to be understood, applied, and replicated by others. This helps expedite the scientific process by helping researchers avoid false positive dead ends. Open source clarity in reproducible methods also saves researchers' time so they don't have to reinvent the proverbial wheel for methods that everyone in the field is already performing. Curriculum This course introduces the concepts of reproducibility and replicability in the context of cancer informatics. It uses hands-on exercises to demonstrate in practical terms how to increase the reproducibility of data analyses. The course also introduces tools relevant to reproducibility including analysis notebooks, package managers, git and GitHub. The course includes hands-on exercises for how to apply reproducible code concepts to their code. Individuals who take this course are encouraged to complete these activities as they follow along with the course material to help increase the reproducibility of their analyses. **Goal of this course:** Equip learners with reproducibility skills they can apply to their existing analyses scripts and projects. This course opts for an "ease into it" approach. We attempt to give learners doable, incremental steps to increase the reproducibility of their analyses. **What is not the goal** This course is meant to introduce learners to the reproducibility tools, but _it does not necessarily represent the absolute end-all, be-all best practices for the use of these tools_. In other words, this course gives a starting point with these tools, but not an ending point. The advanced version of this course is the next step toward incrementally "better practices". How to use the course This course is designed with busy professional learners in mind -- who may have to pick up and put down the course when their schedule allows. Each exercise has the option for you to continue along with the example files as you've been editing them in each chapter, OR you can download fresh chapter files that have been edited in accordance with the relative part of the course. This way, if you decide to skip a chapter or find that your own files you've been working on no longer make sense, you have a fresh starting point at each exercise.
Applying Data Analytics in Finance
This course introduces an overview of financial analytics. You will learn why, when, and how to apply financial analytics in real-world situations. You will explore techniques to analyze time series data and how to evaluate the risk-reward trade off expounded in modern portfolio theory. While most of the focus will be on the prices, returns, and risk of corporate stocks, the analytical techniques can be leverages in other domains. Finally, a short introduction to algorithmic trading concludes the course. After completing this course, you should be able to understand time series data, create forecasts, and determine the efficacy of the estimates. Also, you will be able to create a portfolio of assets using actual stock price data while optimizing risk and reward. Understanding financial data is an important skill as an analyst, manager, or consultant.
Predict Sales Revenue with scikit-learn
In this 2-hour long project-based course, you will build and evaluate a simple linear regression model using Python. You will employ the scikit-learn module for calculating the linear regression, while using pandas for data management, and seaborn for plotting. You will be working with the very popular Advertising data set to predict sales revenue based on advertising spending through mediums such as TV, radio, and newspaper. By the end of this course, you will be able to: - Explain the core ideas of linear regression to technical and non-technical audiences - Build a simple linear regression model in Python with scikit-learn - Employ Exploratory Data Analysis (EDA) to small data sets with seaborn and pandas - Evaluate a simple linear regression model using appropriate metrics This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Jupyter and Python 3.7 with all the necessary libraries pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Fundamentals of Data Analytics in the Public Sector with R
Gain a foundational understanding of key terms and concepts in public administration and public policy while learning foundational programming techniques using the R programming language. You will learn how to execute functions to load, select, filter, mutate, and summarize data frames using the tidyverse libraries with an emphasis on the dplyr package. By the end of the course, you will create custom functions and apply them to population data which is commonly found in public sector analytics. Throughout the course, you will work with authentic public datasets, and all programming can be completed in RStudio on the Coursera platform without additional software. This is the first of four courses within the Data Analytics in the Public Sector with R Specialization. The series is ideal for current or early career professionals working in the public sector looking to gain skills in analyzing public data effectively. It is also ideal for current data analytics professionals or students looking to enter the public sector.
Introduction to Data Science and scikit-learn in Python
This course will teach you how to leverage the power of Python and artificial intelligence to create and test hypothesis. We'll start for the ground up, learning some basic Python for data science before diving into some of its richer applications to test our created hypothesis. We'll learn some of the most important libraries for exploratory data analysis (EDA) and machine learning such as Numpy, Pandas, and Sci-kit learn. After learning some of the theory (and math) behind linear regression, we'll go through and full pipeline of reading data, cleaning it, and applying a regression model to estimate the progression of diabetes. By the end of the course, you'll apply a classification model to predict the presence/absence of heart disease from a patient's health data.
Create Interactive Dashboards with Streamlit and Python
Welcome to this hands-on project on building your first interactive, data dashboard with the Streamlit library in Python. By the end of this project, you are going to be comfortable with using Python and Streamlit to build beautiful and interactive dashboards and web apps, all with zero web development experience! We are going to load, explore, visualize and interact with data, and generate dashboards in less than 150 lines of Python code! Prior experience with writing simple Python scripts and using pandas for data manipulation is recommended. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.