Back to Courses

Physical Science And Engineering Courses - Page 35

Showing results 341-350 of 522
BIM Application for Engineers
In order to effectively reach the goal of learning, students will get familiar with the model-building process. The second module of the course will be on how to use Autodesk Revit to build BIM models. We will use an example case and guide students to build a 6-story BIM model from the CAD drawings step by step. Then, in the following three modules, we will introduce three essential BIM applications one by one in each module, namely clash detection, quantity takeoff, and 4D simulation. We will use Autodesk Revit and Navisworks to build our BIM models in this course.
Advanced Chemistry
A chemistry course to cover selected topics covered in advanced high school chemistry courses, correlating to the standard topics as established by the American Chemical Society. Prerequisites: Students should have a background in basic chemistry including nomenclature, reactions, stoichiometry, molarity and thermochemistry.
The Sun and the Total Eclipse of August 2017
A total eclipse is one of the most spectacular sights you can ever see! It looks like the end of the world may be at hand. There is a black hole in the sky where the sun should be. Pink flames of solar prominences and long silver streamers of the sun's corona stretch across the sky. It gets cold, and animals do strange things. People scream and shout and cheer, and remember the experience their whole life. But total eclipses are important scientifically as well. They let us see parts of the sun’s atmosphere that are otherwise invisible. A total eclipse presented the first chance to test Einstein’s prediction that matter can bend space – like near a black hole. The best total eclipse in the United States in 40 years happens August 21st, 2017. This course has two primary goals: 1) to get you excited for the total solar eclipse coming in August 2017 and prepare you and your community to safely view it 2) to provide an inviting overview of the science of the sun and the physics of light If you are most interested in preparing for the eclipse, you can hop right into Week 5! If you want the full course experience, and to get some fun scientific context for what you'll be seeing on August 21st, start with Week 1 and move through the course week by week! [Note: if you start with Week 1, you can skip through some of the repeated material once you get to Week 5.] Overall this course will prepare you to... * Safely view the total or partial solar eclipse * Help others watch safely and even make money by leading a “neighborhood watch” of the eclipse * Review fundamental sun science, including the physics of light, how astronomers study the sun, how it formed, how we know what’s inside it, and where the energy that supports life on earth is generated
Sensors and Sensor Circuit Design
This course can also be taken for academic credit as ECEA 5340, part of CU Boulder’s Master of Science in Electrical Engineering degree. After taking this course, you will be able to: ● Understand how to specify the proper thermal, flow, or rotary sensor for taking real-time process data. ● Implement thermal sensors into an embedded system in both hardware and software. ● Add the sensor and sensor interface into a microprocessor based development kit. ● Create hardware and firmware to process sensor signals and feed data to a microprocessor for further evaluation. ● Study sensor signal noise and apply proper hardware techniques to reduce it to acceptable levels. You will need to buy the following components to do the two course projects based on the videos in this module. Note that if you have already purchased the PSOC 5LP PROTOTYPING KIT, you do not need to buy it again. These parts may be purchased off the Digikey web site, www. Digikey.com. Or, you may obtain the specs from the site, and purchase them elsewhere. These are the part numbers typed out, so you can copy and paste them into the Digikey web site. You will need one of each part. 428-3390-ND NHD-0216BZ-RN-YBW-ND 570-1229-ND A105970CT-ND Additional equipment needed: • Wire - various gauges and lengths • Breadboard • Oscilloscope – suggested models are: o PICOSCOPE 2204A-D2 available on www.digikey.com or o Digilent 410-324 | OpenScope MZ available on www.newark.com Depending on your budget, you can also investigate these models: o Hantek HT6022BE20MHz - https://www.amazon.com/dp/B009H4AYII o SainSmart DSO212 - https://www.amazon.com/dp/B074QBQNB7 o PoScope Mega50 USB - https://www.robotshop.com/en/poscope-mega50-usb-mso-oscilloscope.html o ADALM2000 - https://www.digikey.com/en/products/detail/analog-devices-inc./ADALM2000/7019661
MOS Transistors
PLEASE NOTE: This version of the course has been formed from an earlier version, which was actively run by the instructor and his teaching assistants. Some of what is mentioned in the video lectures and the accompanying material regarding logistics, book availability and method of grading may no longer be relevant to the present version. Neither the instructor nor the original teaching assistants are running this version of the course. There will be no certificate offered for this course. Learn how MOS transistors work, and how to model them. The understanding provided in this course is essential not only for device modelers, but also for designers of high-performance circuits.
Planning for Climate Change in African Cities
Climate change poses a threat to economic growth and long-term prosperity of many countries around the world. Africa is not an exception, considering the actual and potential impacts of climate change and climate variability that will threaten its vulnerable sectors and human populations. African countries are projected to experience changing rainfall patterns, rising sea levels, and higher temperatures that will affect food security, agricultural production, water availability, and public health, among others. These climate change impacts and climate variability can further produce social and political problems, such as rural-urban migration and water resource disputes. Furthermore, the low levels of development in many African countries, as well as limited institutional, infrastructural, and technical capacities to respond successfully to climate change impacts and climate variability, can exacerbate the situation. In terms of contribution to greenhouse gas (GHG) emissions, although African countries are the lightest polluters, it has also become apparent that alternative energy sources can offset the increasing energy demand and dependence on biomass. Addressing climate change offers possibilities for low-carbon development. Moreover, there are promising mechanisms that can address both climate change actions and development goals simultaneously. At the city level, strengthening resilience, or the ability to respond to and absorb the effects of a hazardous event in a timely and efficient manner and to sustain this ability in the future, and adaptation; the process of adjusting to actual or expected climate change stimuli or their effects, should be at the forefront of planning. Local governments have an important role to play through the provision of adequate infrastructure, regulation of land use, and other public services that are crucial for urban resilience. Mobilizing local governments, in collaboration with national governments, non-governmental organizations, and international organizations, among others, is also critical for an integrated multi-sectoral approach to climate change. The Course on Planning for Climate Change in African Cities provides the foundation for understanding cities’ exposure and sensitivity to climate change, and how cities can manage these impacts in the face of growing uncertainty. It does so by introducing the basic concepts of urban resilience and adaptation, by using illustrative case studies in different African cities. Furthermore, this module provides lectures on the different approaches for climate change planning, whether ad hoc, strategic or mainstreaming; introduces the different steps in the planning cycle – from initial assessment to monitoring and evaluation; and presents the different decision support and assessment tools for prioritizing climate change actions. This course broadens the discussion on planning for climate change by engaging learners to apply their knowledge and practice their decision-making skills in a simulated exercise. In line with development that minimizes the harm caused by climate change impacts, while maximizing the many human development opportunities presented by a more resilient future, we ask: what are the connections between urban risk and vulnerability? How is climate change and urban resilience conceptualized and applied in practice? Which policies and measures should be introduced to address climate change? Finally, how to choose among different measures that address climate change adaptation, urban resilience, and other development objectives? Course Objectives: At the end of this course, learners should be able to: • Recognize the effects, impacts, and drivers of climate change in cities • Understand the drivers of urban risk and vulnerability in the context of climate change • Distinguish the typologies, approaches, and tensions of climate change adaptation • Explain the different approaches and steps in climate change planning • Examine the decision support and assessment tools for climate change • Develop a climate change plan based on participants’ city contexts
Introduction to advanced tomography
In this course you get the chance to get teaching and hands-on experience with the complete workflow of high-resolution tomography analysis. You will get introduced to data acquisition, 3D reconstruction, segmentation and meshing and, finally, 3D modelling of data to extract physical parameters describing mechanical and flow properties. The teaching and the exercises will take place in close interaction with top experts in the field. Exercises will require some basic programming skills, and will be carried out in a common python environment.
Sustainability Challenges for the Planet and Employers
This course builds on the foundational knowledge gained in the first course in the series. Learners will continue to shape their understanding of global problems like climate change while developing their skills in using sustainability indicators, managing waste streams, addressing challenges, and providing green building recommendations. Mixed modalities continue to be used to provide text, video, interactive activities, and peer reviews so all learners can add to their knowledge around sustainability issues. Content overviews and instructional lecture videos produced with ASU School of Sustainability professors are the cornerstones of the content presented in this course. Topical and practical knowledge is the central combination of elements driving this course. Through interactive learning objects and peer-reviewed submissions, learners have the opportunity to practice their skills and receive feedback from experts and their fellow learners. Learners also participate in regular knowledge checks throughout the course, with mid-course and final assessments to evaluate their overall learning. This course uses interactive activities, hands-on experiences, and opportunities to build tools like checklists and memo templates to help learners gain confidence in their skills and support their entry into the workforce. Building on the skills they have learned in the first course, this learning experience provides learners with more specialized knowledge while still tying it to real-world scenarios and skills that they will need when they get into the field as sustainability analysts.
The Meat We Eat
The Meat We Eat is a course designed to create a more informed consumer about the quality, safety, healthfulness and sustainability of muscle foods and address current issues in animal agriculture in developed and developing countries.
Systems Biology and Biotechnology Capstone
NOTE: In order to take this course you should have taken and complete the following courses in the Signature Track: Introduction to Systems Biology, Network Analysis in Systems Biology, Dynamical Modeling Methods for Systems Biology, Experimental Methods in SB and Integrated Analysis In Systems Biology