Back to Courses

Physics And Astronomy Courses - Page 6

Showing results 51-60 of 87
Big History: Connecting Knowledge
We currently face unprecedented challenges on a global scale. These problems do not neatly fall into disciplines. They are complicated, complex, and connected. Join us on this epic journey of 13.8 billion years starting at the Big Bang and travelling through time all the way to the future. Discover the connections in our world, the power of collective learning, how our universe and our world has evolved from incredible simplicity to ever-increasing complexity. Experience our modern scientific origin story through Big History and discover the important links between past, current, and future events. You will find two different types of lectures. ‘Zooming In’ lectures from multiple specialists enable you to understand key concepts through the lens of different disciplines, whilst David Christian's ‘Big History Framework’ lectures provide the connective overview for a journey through eight thresholds of Big History.
Understanding Modern Physics I: Relativity and Cosmology
Course Overview: https://youtu.be/xyF-MmGNxd0 The 20th century was known as the century of physics. In the past 120 years, concepts such as space, time, energy, entropy and particles were understood to much deeper levels. New paradigms of thinking such as relativity and quantum mechanics emerged. This course is the first course in the Understanding Modern Physics series, which covers an introduction to special relativity, general relativity and cosmology. We will find: (i) How space and time are relative to observers, and unified into a more fundamental construction of spacetime; (ii) Why the spacetime is not absolute, but rather curves in response to matter, and how gravity emerge as a result of such spacetime curvature; and (iii) What is the framework to understand the evolution of the whole universe, and how that is related to problems such as the origin of space and matter, and the fate of our universe. Note: the videos with a (*) are optional. They provide complementary information but not in the learning objective or assignment questions. Feel free to choose to watch them or not.
Physics 102 - Magnetic Fields and Faraday's Law
This course serves as an introduction to the physics of electricity and magnetism. Upon completion, learners will have an understanding of how the forces between electric charges are described by fields, and how these fields are related to electrical circuits. They will gain experience in solving physics problems with tools such as graphical analysis, algebra, vector analysis, and calculus. The course follows the typical progression of topics of a first-semester university physics course: charges, electric forces, electric fields potential, magnetic fields, currents, magnetic moments, electromagnetic induction, and circuits. Each module contains reading links to a free textbook, complete video lectures, conceptual quizzes, and a set of homework problems. Once the modules are completed, the course ends with an exam. This comprehensive course series is similar in detail and rigor to what is taught on-campus. It will thoroughly prepare learners for their upcoming introductory physics courses, or more advanced courses in physics.
Astronomy: Exploring Time and Space
This course is designed for anyone who is interested in learning more about modern astronomy. We will help you get up to date on the most recent astronomical discoveries while also providing support at an introductory level for those who have no background in science.
Physics 101 - Forces and Kinematics
This course serves as an introduction to the physics of force and motion. Upon completion, learners will have an understanding of how mathematical laws and conservation principles describe the motions and interactions of objects all around us. They will gain experience in solving physics problems with tools such as graphical analysis, algebra, vector analysis, and calculus. The course follows the typical progression of topics of a first-semester university physics course: Kinematics, Newton’s Laws, Energy, and Momentum. Each of five modules contains reading links to a free textbook, complete video lectures, conceptual quizzes, and a set of homework problems. Once the modules are completed, the course ends with an exam. With 100 brief lectures and over 100 problems, this comprehensive course is similar in detail and rigor to those taught on-campus. It will thoroughly prepare learners for their upcoming introductory physics courses, or more advanced courses in physics.
Beer Quality: Foam
As it is one of the most distinctive qualities of beer, achieving the perfect foam is a precise art. In this course, you’ll learn how foam affects the quality of beer. Designed for brewers of all skill levels, this online course is part of a comprehensive series where "The Pope of Foam”, Charlie Bamforth, guides you through the key markers of beer quality: flavor, foam, color/clarity, freshness and quality systems. Through a series of riveting lectures, you will discover the science behind foam, how to measure and assess foam and how to achieve the ideal foam. By the end of this course, you will be able to apply your new knowledge to ensure excellent foam performance on your beers.
Preparing for the AP Physics 1 Exam
This course is designed for high school students preparing to take the AP* Physics 1 Exam. * AP Physics 1 is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product.
Strategies for winning. Meteorology in a round the world regatta
In this course you can learn about the mechanics of global weather, the foundations of ocean meteorology, predictive modeling and how sailors receive data via satellite and use high-performance navigation software. This course looks at oceanic meteorology and climatology through the lens of the sport of sailing. You will gain a basic knowledge of meteorology needed by sailors to take part in a regatta such as the Barcelona World Race, the only double-handed, round the world regatta with no stops. You will learn about the strategies employed during a round the world regatta and how these are put to use on board the latest ocean racing yachts.
The Sun and the Total Eclipse of August 2017
A total eclipse is one of the most spectacular sights you can ever see! It looks like the end of the world may be at hand. There is a black hole in the sky where the sun should be. Pink flames of solar prominences and long silver streamers of the sun's corona stretch across the sky. It gets cold, and animals do strange things. People scream and shout and cheer, and remember the experience their whole life. But total eclipses are important scientifically as well. They let us see parts of the sun’s atmosphere that are otherwise invisible. A total eclipse presented the first chance to test Einstein’s prediction that matter can bend space – like near a black hole. The best total eclipse in the United States in 40 years happens August 21st, 2017. This course has two primary goals: 1) to get you excited for the total solar eclipse coming in August 2017 and prepare you and your community to safely view it 2) to provide an inviting overview of the science of the sun and the physics of light If you are most interested in preparing for the eclipse, you can hop right into Week 5! If you want the full course experience, and to get some fun scientific context for what you'll be seeing on August 21st, start with Week 1 and move through the course week by week! [Note: if you start with Week 1, you can skip through some of the repeated material once you get to Week 5.] Overall this course will prepare you to... * Safely view the total or partial solar eclipse * Help others watch safely and even make money by leading a “neighborhood watch” of the eclipse * Review fundamental sun science, including the physics of light, how astronomers study the sun, how it formed, how we know what’s inside it, and where the energy that supports life on earth is generated
Introduction to advanced tomography
In this course you get the chance to get teaching and hands-on experience with the complete workflow of high-resolution tomography analysis. You will get introduced to data acquisition, 3D reconstruction, segmentation and meshing and, finally, 3D modelling of data to extract physical parameters describing mechanical and flow properties. The teaching and the exercises will take place in close interaction with top experts in the field. Exercises will require some basic programming skills, and will be carried out in a common python environment.